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The dynamical behaviour of a flexible beam–water interaction system is examined. The
coupled system is subject to an undisturbed boundary condition at infinity in the water
domain and a zero surface wave or linear surface disturbance condition on the free surface.
The governing equations describing the behaviour of the system are analyzed by using
the separation of variables method and their solutions presented. The eigenvalue equation
of the natural vibration of the beam–water system is derived and exact solutions for
each combination of boundary conditions are obtained. Calculations show that for
the undisturbed condition at infinity in the water domain, the natural frequencies of the
coupled dynamic system are lower than those of the flexible dry beam, indicating that the
influence of water on the beam has the effect of an additional mass. It is further shown
that the free surface wave disturbance plays a more important role in the determination
of vibration characteristics in the lower frequency region of the coupled system and that
fluid compressibility is more influential at higher frequencies. The orthogonality relation
of the natural vibration forms of the coupled fluid–structure interaction system are derived
and the case of this coupled system subject to the radiation condition at infinity proposed
by Sommerfeld [1] is discussed.

7 1997 Academic Press Limited

1. INTRODUCTION

In offshore and irrigation engineering, a structure such as an offshore platform, a dam
or a tower surrounded by water is usually simplified in analyses as a beam or a column
structure when determining its static or dynamic responses. Therefore, the flexible
beam–water interaction problem is of significance in these branches of engineering.
Westergaard [2] first investigated the hydrodynamic pressure on a rigid dam during
earthquakes, although the effect of surface waves is ignored in this classical study.
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Westergaard’s findings revealed that the magnitude of the hydrodynamic pressure depends
on the excitation frequency. Chopra [3] derived an analytical solution of the hydrodynamic
pressure on a vertical rigid dam and showed that Westergaard’s solutions are valid only
if the excitation frequency is less than the fundamental frequency of the reservoir. He
extended the theory to investigate the hydrodynamic pressure resulting from horizontal
and vertical ground motions including the influence of free surface waves. Chopra
concluded that the associated contribution of free surface wave disturbance is small.
Chwang [4] presented an exact solution of the hydrodynamic pressure on a rigid dam with
an inclined upstream face of constant slope but neglected the compressibility of the fluid
in the reservoir. Liu [5] extended Chwang’s work to obtain an exact solution for a rigid
sloping embankment damming a triangular shaped reservoir. Xing and Price [6]
re-examined the influence of free surface waves on the hydrodynamic pressures experienced
by dams during an earthquake tremor. It was assumed that this excitation caused a
sinusoidal horizontal vibration in the dam and a sinusoidal vertical vibration over a
prescribed floor region within the reservoir. It was shown that the two free surface
boundary conditions produce only small differences in the values of the natural
frequencies.

In the previously described investigations, the elasticity or flexibility of the structure was
not considered. Inclusion of this effect complicates the problem significantly. Therefore,
to simplify this dynamic problem, the effects of free surface waves or fluid compressibility
or both are often neglected (see, for example, references [7, 8]). Assuming an undisturbed
condition at infinity in the water domain, the coupled vibrations between a flexible column
structure and water including the effects of surface wave disturbance and fluid
compressibility were studied by Goto and Toki [9], Liaw and Chopra [10] and Zhu, Weng
and Wu [11]. These investigations showed that the influence of free surface waves is of
greater importance to the dynamical behaviour of a long-thin beam–water system, whereas
the effect of fluid compressibility is the more dominant influence for a short-thick
beam–water system.

In a hydrodynamic analysis, the radiation condition at infinity in the water domain plays
an important role in determining the behaviour characteristics of the fluid. In developing
exact solutions of the hydrodynamic loadings on rigid dams excited by horizontal and
vertical vibrations, Xing and Price [6] concluded that at infinity in the water domain the
nth component of the dynamic pressure response in the horizontal excitation case satisfies
the undisturbed condition if the nth natural frequency of the reservoir is higher than the
excitation frequency or the radiation condition if it is less than the excitation frequency.
Therefore, if the frequency of excitation is higher than the fundamental freqency of the
reservoir, the components of the dynamic pressure response are a combination of two
types: namely, one satisfying the undisturbed condition and the other satisfying the
radiation condition, both at infinity. However, these conclusions are associated with rigid
structures, since distortions of the structures were excluded. It is interesting to note that
Chopra [3] concluded that Westergaard’s classic solutions are valid only if the frequency
of excitation is less than the fundamental frequency of the reservoir, which—in the context
of the previous discussion—implies that solutions relate to the undisturbed or zero
disturbance condition at infinity in the fluid domain.

In both two- and three-dimensional time domain analyses of fluid–structure interactions,
Tsai and Lee [12, 13], Lee and Tsai [14], Tsai, Lee and Ketter [15], and Tsai, Lee and Yeh
[16] developed an efficient time-domain semi-analytical method to express the radiation
condition in the far field region of the fluid domain. Lee and Tsai [14] derived a
time-domain exact solution taking into consideration the radiation condition of the fluid
domain and the deformation of the structure by using the Laplace transform method. They
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examined the transient analysis of the forced response of beam–water systems excited by
sground accelerations in the upstream–downstream horizontal direction. A zero free
surface disturbance condition was assumed, but they did not discuss the natural vibration
characteristic behaviour of the systems. However, they presented a selection of free
vibration results of the water domain, which are not necessarily the fundamental
characteristics of the fluid–structure interaction systems, and then they used this
information to evaluate the hydrodynamic pressure.

From the viewpoint of continuum mechanics, it is necessary for the fluid–structure
interaction system to be considered as a total dynamical system within the dynamic
analysis. Therefore, as discussed by Xing and Price [17] and Xing, Price and Du [18], there
exist natural vibration characteristics (i.e., frequencies and mode shapes) and these depend
on the assumptions inherent in the mathematical model (i.e., rigid or flexible structure)
and the boundary conditions imposed on the structure (pinned, rigid, etc.), the free surface
disturbance and the boundary conditions at infinity in the fluid domain. Xing et al.
presented a selection of numerical results for a wide range of fluid–structure interaction
systems and showed the importance of the natural vibration analysis component within
the overall dynamic analysis to determine forced motion responses. In this paper,
therefore, attention is focused on exact natural vibration solutions for a unified coupled
beam–water dynamic system subject to a variety of assumptions and boundary conditions
in order to assess the influence of such effects on solution; namely, a dry versus wet beam
and the implication of flexibility on solution, the imposition of a zero surface wave
disturbance or allowing waves to generate on the free surface and the imposition of an
undisturbed condition at infinity in the fluid domain. An exact solution for each case is
obtained using the separation of variables method (see reference [19]) and/or techniques
used by others in previous studies (see, for example, references [6, 7, 11, 14]). The numerical
examples presented provide a comparison of the effects of the free surface wave
disturbance and fluid compressibility on the natural dynamic characteristics of the
interacting system subject to the undisturbed condition at infinity. These highlight the
importance of each effect in relation to the natural frequencies of the coupled fluid–beam
dynamic interacting system.

2. GOVERNING EQUATIONS

Consider the beam–water interacting system as illustrated in Figure 1. Here x and y
represent a two-dimensional Cartesian co-ordinate system with origin o at the intersection
of the central line of the beam and horizontal floor of the reservoir. It is assumed that
the water is compressible, inviscid, its motion irrotational and the reservoir is of mean
depth h; the flexible uniform beam is of height H (qh), wet height h, of breadth F and
of unit thickness perpendicular to the o–xy plane. The bending stiffness and mass density
of the beam are denoted by EJ and rs respectively; rf and c represent the mass density
and the sound speed of the water. Under the assumption of small disturbances, the
linearized equations describing the dynamic pressure p(x, y, t) in the water, the deflections
u1( y, t), (0Q yQ h) and u2( y, t) (hQ yQH) in the beam are as follows.

2.1.  

2.1.1. Dynamic equation

12p/1x2 + 12p/1y2 = (1/c2)12p/1t2, 0Q xQa, 0Q yQ h. (1)
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2.1.2. Boundary conditions
On the free surface, this condition takes one of the two following forms: (1) zero free

surface wave disturbance,

p=0, y= h, (2)

or (2) a free surface wave disturbance governed by the equation

1p/1y=−(1/g)12p/1t2, y= h. (3)

On the bottom of the reservoir, assumed to be impermeable and rigid,

1p/1y=0, y=0. (4)

At infinity in the water domain, it is assumed that the pressure disturbance in the water
does not transmit to infinity in the water domain; namely, there is an undisturbed condition
governed by the following equation

p=0, x:a. (5)

2.2.  

2.2.1. Dynamic equation
The equation of motion governing the submerged beam, treated for simplicity as a

Bernoulli beam, is

EJ(14u1/1y4)+ rsF(12u1/1t2)=−p(0, y, t), 0Q yQ h, (6)

and, for the dry portion in air,

EJ(14u2/1y4)+ rsF(12u2/1t2)=0, hQ yQH. (7)

2.2.2. Boundary conditions
At the base of the beam, assumed to be fixed,

u1(0, t)=0, (1u1/1y)(0, t)=0, (8)

Figure 1. The coupled beam–water interaction system.
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while at the free end

(13u2/1y3)(H, t)=0, (12u2/1y2)(H, t)=0. (9)

On the interface between the wetted and the dry portions of the beam, the deflection,
the rotation angle, the internal shear force and bending moment of the beam must be
continuous. This is satisfied when

u1(h, t)= u2(h, t), (1u1/1y)(h, t)= (1u2/1y)(h, t), (10)

(12u1/1y2)(h, t)= (12u2/1y2)(h, t), (13u1/1y3)(h, t)= (13u2/1y3)(h, t). (11)

2.3. –  

On the fluid–structure interaction interface, the pressure p in the water and the
displacement u1 of the wetted beam section satisfy the relation

1p/1x=−rf(12u1/1t2), x=0, 0Q yQ h. (12)

3. VARIABLES SEPARABLE FORMS OF GOVERNING EQUATIONS

By using the separation of variables method (see, for example, reference [19]), solutions
of the pressure p and of the displacements u1 and u2 are sought in the forms

p(x, y, t)=P(x, y)T(t)=X(x)Y( y)T(t),

u1( y, t)=U1( y)T(t), u2( y, t)=U2( y)T(t). (13)

The substitution of these expressions into the governing equations (1)–(12) allows
separation of variables and it can be shown that each variable X(x), Y( y), T(t), U1( y)
and U2( y) satisfies, respectively, the following equations.

(1) For the time function T(t),

T0+V
 2T=0; (14)

(2) for the spatial y-function Y( y),

Y0+ k̂2Y=0, Y'(0)=0, (15, 16)

subject to the boundary condition derived from equation (2)

Y(h)=0 when free surface waves are neglected, (17)

or, by (3),

Y'− (V
 2/g)Y=0, y= h, when free surface waves are included; (18)

(3) for the spatial x-function X(x),

X0+ l
 2X=0, (19)

subject to the boundary condition (5)

X(x)=0, x:a, undisturbed case; (20)

(4) for the displacement functions U1( y) and U2( y):

EJU(4)
1 − rsFV
 2U1 =−X(0)Y( y), 0Q yQ h, (21)

subject to the boundary conditions (8)

U1(0)=0, U'1 (0)=0; (22, 23)
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and

EJU(4)
2 − rsFV
 2U2 =0, hQ yQH, (24)

subject to the boundary conditions (9)

U02 (H)=0, U12 (H)=0 (25, 26)

and the interface conditions (10) and (11)

U1(h)=U2(h), U'1 (h)=U'2 (h), (27)

U01 (h)=U02 (h), U11 (h)=U12 (h), (28)

and (5) on the fluid–solid interaction interface (12)

rfV
 2U1( y)=X'(0)Y( y), 0Q yQ h. (29)

In these equations, ()', ()0, ()1 and ()(4) indicate the differential order of the function ();
V
 2, k̂2 and l
 2 represent three real parameters (see the Appendix) to be determined. They
satisfy the relation

l
 2 = (V
 2/c2)− k̂2. (30)

Therefore it is assumed that the parameters V
 , k̂ and l
 can be zero, a positive real number
or a positive purely imaginary number. In the latter case, they can be rewritten as V
 =iV,
k̂=ik and l
 = il, where V, k and l represent three positive real numbers. The adoption
of these parameters allows the general solutions of the previous sets of equations, subject
to the imposed boundary conditions, to be represented as follows.

(i) For the time function, two solutions are possible depending on the value of V
 . That
is,

T(t)=At+B, V
 =0, (31)

T(t)= a eiV
 t + b e−iV
 t, V
 $ 0. (32)

(ii) The function Y( y) satisfying equations (15) and (16) takes the form

Y( y)=D cos (k̂y). (33)

(iii) The solutions of the function X(x) satisfying equation (19) take the forms

X(x)=Qx+S, l
 = 0, (34)

X(x)= q eil
 x + s e−il
 x, l
 $ 0. (35)

Here, A, B, D, Q, S, a, b, q and s represent constants to be determined depending on
the boundary conditions. The constants A, B, D, Q and S are real valued, whereas a, b,
q and s may take complex valued representations.

The well known relations

eix =cos x+i sin x, cos ix=cosh x, sin ix=i sinh x,

cosh ix=cos x, sinh ix=i sin x (36)

allow the complex forms of the functions T(t), Y( y) or X(x) to be transformed into other
forms. For example, the function T(t) in equation (32) and the function X(x) in equation
(35) can be expressed alternatively in the forms

T(t)= a cos (V
 t)+ b sin (V
 t), for V
 2 $ 0, (37)

X(x)= q cos (l
 x)+ s sin (l
 x), for l
 2 $ 0. (38)
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4. SOLUTIONS FOR THE FUNCTIONS X(x), Y( y) AND T(t)

Depending on the boundary conditions chosen, there exist two different solutions of the
problem. Their combinations are as follows: (i) zero disturbance at infinity (x:a) and
free surface disturbance neglected; (ii) zero disturbance at infinity and free surface
disturbance assumed. These two cases are examined in sections 4.1 and 4.2, respectively.
No assumption is introduced concerning fluid compressibility (i.e., 0Q cEa).

From equations (20), (34) and (35), it is found that

X(x)0 0, l
 = 0, l
 q 0, (39)

X(x)= e−lx, l
 = il. (40)

Therefore, a non-trivial solution of the problem is obtained only if l
 = il.

4.1.    

The function Y( y) expressed in equations (33) must satisfy the boundary conditions
(17), from which it follows that

cos (k̂h)=0. (41)

Solving this equation yields the result

Y( y)0 0, for k̂=0 or k̂=ik, (42)

Yn ( y)= cos (k̂ny), for k̂n =(2n−1)p/2h, n=1, 2, 3, . . . . (43)

In combination with equations (30) and (40), for each V
 the non-trivial solutions for
the functions of Y( y) and X(x) corresponding to T(t) in equations (31) and (32) are

Yn ( y)= cos (k̂ny), Xn (x)= e−lnx, (44)

k̂n =(2n−1)p/2h, n=1, 2, 3, . . . , l2
n = k̂2

n −V
 2/c2 q 0, for arbitrary V
 .

4.2.    

The function Y( y) in equation (33) satisfies the boundary condition (18), from which
it follows that

tan (k̂h)=−V
 2/gk̂. (45)

The solution of this equation allows Y( y) to be expressed in the forms

Y( y)= d, k̂=0=V
 , (46)

Y0( y)= cos (k̂0y)= cosh (k0y), k̂0 = ik0, V
 q 0, (47)

Yn ( y)= cos (k̂ny), k̂n q 0, n=1, 2, 3, . . . , for arbitrary V
 . (48)

Here k̂n (n=0, 1, 2, 3, . . . ) is derived as follows.
The first solution k0 of the equation

tanh (k0h)=V
 2/gk0, (49)

is shown in Figure 2.
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Figure 2. The solution k0 of equation (49) corresponding to a particular value V
 (x= kh, x0 = k0h).

By solving equation (45), the remaining values k̂n (n=1, 2, 3, . . .) are obtained as
follows:

k̂nh= np, for V
 =0, (50)

k̂nh $ ((n−1)p, (2n−1)p/2), for V
 = iV, (51)

k̂nh $ ((2n−1)p/2, np), for V
 q 0. (52)

The solutions given in equations (51) and (52) can be derived numerically or in a graphical
manner as illustrated in Figures 3 and 4.

In combination with equations (30) and (40), for each V
 the non-trivial solutions of
the functions Y( y) and X(x) corresponding to T(t) in equations (31) and (32) are given
by

Yn ( y)= cos (k̂ny), Xn (x)= e−lnx, l2
n = k̂2

n −V
 2/c2 q 0, (53)

Figure 3. A series of solution k̂n of equation (51) corresponding to each V (x= k̂h, x1 = k̂1h, x2 = k̂2h).
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=
np

h
if V
 =0

tan (k̂nh)=−
V
 2

gk̂n
, k̂n :g

G

G

G

G

G

G

F

f

$ 0(n−1)p
h

,
(2n−1)p

2h 1 if V
 =iV .

$ 0(2n−1)p
2h

,
np

h 1 if V
 q 0, n=1, 2, 3, . . .

5. EIGENVALUE EQUATIONS

The eigenvalue equations of the beam–water system can be derived by using equations
(21)–(29). For the case V
 2 Q 0, V
 =iV, the exponential solutions of the function T(t) do
not represent natural vibration solutions, so that only the cases V
 2 e 0 need be examined.
The case V
 2 =0 provides a static solution equivalent to rigid mode solutions in structural
vibration. However, for the undisturbed condition at infinity in the fluid domain there
exists no non-trivial static solution associated with V
 2 =0.

For a positive value of V
 , the function T(t) given in equation (32) is complex and the
real pressure p(x, y, t), displacements u1( y, t) and u2( y, t) defined in equation (13) are
represented by their corresponding complex functions. It must be noted that only the real
parts of these complex functions p, u1 and u2 represent real physical quantities (see, for
example, reference [20]).

The solutions of the functions Y( y) and X(x) are given by equation (44) for the case
in which free surface waves are ignored and equation (53) in the presence of a free surface
wave disturbance.

During the calculation to obtain the curve of =R= 0v in Figure 5, for each given value
of V
 , there exists a series of functions Yn ( y) and Xn (x). Let n1 denote a minimum positive
integer for which the inequality k̂2

n qV
 2/c2 is satisfied. By adopting the superposition
principle, it can be shown that

X(x)Y( y)= s
a

n= n1

Gn e−lnx cos (k
 ny), (54)

where each unknown Gn is a real constant.

Figure 4. A series of solution k̂n of equation (52) corresponding to each V
 (x= k̂h, x1 = k̂1h).
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For a more general discussion of the proposed solutions, one can define the following
non-dimensional parameters:

j= y/H, n= h/H, g= rfH/rsF, v2 =V
 /Vb , k̄n = k̂nH,

l� 2n = k̄2
n −v4/c̄2, c̄= c/VbH. (55)

Here Vb =[EJ/(rsFH4)]1/2 represents a frequency parameter of the dry beam. The
variables j and n denote a non-dimensional co-ordinate and the ratio of water depth to
beam height, respectively; g is the mass ratio of water to beam and v2 denotes the frequency
parameter.

On substituting equations (54) and (55) into equations (21), (24) and (29), one finds that

U�(4)
1 (j)−v4U�1(j)=− s

a

n= n1

An cos (k̄nj), 0Q jQ n, (56)

U�(4)
2 (j)−v4U�2(j)=0, nQ jQ 1, (57)

U�1(j)=− s
a

n= n1

l� nAn

gv4 cos (k̄nj), 0Q jQ n, (58)

Figure 5. A typical curve of =R= 0v used to determine the natural frequencies of the beam–water interaction
system.
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where each An =GnH3/EJ is a non-dimensional real constant for n1 E nEa. The solution
U�1(j) satisfying equation (56) and the solution U�2(j) satisfying equation (57) are
expressible in the series forms

U�1 = s
4

j=1

Djfj (j)+ s
a

n= n1

Bn cos (k̄nj), U�2 = s
8

j=5

Djfj (j), (59)

where,

Bn =−An/(k̄4
n −v4), (60)

and the real valued beam functions fm (1EmE 8) are defined as follows:

f1(j)= cos (vj), f2(j)= sin (vj), f3(j)= cosh (vj), f4(j)= sinh (vj),

f5(j)= cos [v(j−1)], f6(j)= sin [v(j−1)],

f7(j)= cosh [v(j−1)], f8(j)= sinh [v(j−1)]. (61)

On substituting equation (59) into equation (58) and using the orthogonality relation of
the functions Yn (j),

g
n

0

Yn (j)Ym (j) dj= 80,
n

2
+

sin (2k̄nn)
4k̄n

= In ,

m$ n

m= n9, (62)

the following results are obtained:

An =En s
4

j=1

DjInj , Bn =E	 n s
4

j=1

DjInj , (63)

where

En =1>6In $ 1
k̄4

n −v4 −
l� n

gv4%7, E	 n =−1>6In $ 1
k̄4

n −v4 −
l� n (k̄4

n −v4)
gv4 %7,

In1 =g
n

0

cos (k̄nj)f1(j) dj, In2 =g
n

0

cos (k̄nj)f2(j) dj,

In3 =g
n

0

cos (k̄nj)f3(j) dj, In4 =g
n

0

cos (k̄nj)f4(j) dj. (64)

The substitution of equations (59) and (60) into the non-dimensional forms of equations
(22), (23) and (25)–(28) produces a linear homogeneous system of algebraic equations
which can be written in the matrix form

RD= 0. (65)

In this equation, D represents a vector

DT = [D1 D2 · · · D8], (66)
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and R represents a 8×8 square matrix. The non-zero elements of this matrix are given
by

R1j =fj (0)+ s
a

n= n1

E	 nInj , R2j =f'j (0), j=1, 2, 3, 4,

R3j =f0j (1), R4j =f1j (1), j=5, 6, 7, 8,

R5j = 8fj (n)+ s
a

n= n1

E	 nInjYn (n),

−fj (n),

j=1, 2, 3, 4

j=5, 6, 7, 89,
R6j = 8vf'j (n)+ s

a

n= n1

E	 nInjY'n (n),

−vf'j (n),

j=1, 2, 3, 4

j=5, 6, 7, 89,
R7j = 8v2f0j (n)+ s

a

n= n1

E	 nInjY0n (n),

−v2f0j (n),

j=1, 2, 3, 4

j=5, 6, 7, 89,
R8j = 8v3f1j (n)+ s

a

n= n1

E	 nInjY1n (n),

−v3f1j (n),

j=1, 2, 3, 4

j=5, 6, 7, 89. (67)

Therefore, the characteristic eigenvalue equation of the beam–water system is

=R==0, (68)

from which the natural frequency parameters v can be determined. The constant vector
D denoted in equations (66) can be obtained by solving equation (65). For each natural
frequency parameter v, the vibration forms U�1(j) and U�2(j) for the beam and X(x)Y( y)
for the water pressure p can be calculated through equations (59) and (54). These natural
vibration forms satisfy orthogonality relations, as demonstrated in Appendix A.

4. NUMERICAL RESULTS

By using the theoretical formulations derived in the previous sections, numerical results
describing the dynamical behaviour of beam–water systems were obtained. In these
calculations, it was assumed that the density of the beam and the density of water are
rs =2·4×103 kg/m3 and rf =1·0×103 kg/m3, respectively; the elastic modulus of the
beam is E=2·94×1010 Pa; the speed of sound in water is c=1439 m/s.

The natural frequencies of the coupled system are determined through the solutions of
equation (65). For free surface waves neglected, the parameters k̂n given in equation (44)
are independent of the natural frequency V
 and the latter can be determined by solving
equation (65) only. However, when free surface waves are present, the parameters k̂n

determined by equation (53) are dependent on the natural frequency V
 and it is therefore
necessary to solve equations (65) and (53) for these frequency values. A typical curve
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T 1

The first frequency parameter v1

g
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

n 0·0 0·5 1·0 3·0 5·0 8·0 10·0

0·0 1·8746
0·5 1·8737 1·8725 1·8673 1·8620 1·8544 1·8493
0·8 1·8592 1·8419 1·7825 1·7311 1·6654 1·6275
1·0 1·8230 1·7773 1·6375 1·5391 1·4340 1·3801

T 2

The second frequency parameter v2

g
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

n 0·0 0·5 1·0 3·0 5·0 8·0 10·0

0·0 4·4810
0·5 4·6563 4·6198 4·4847 4·3657 4·2130 4·1253
0·8 4·5591 4·4470 4·1362 3·9427 3·7522 3·6610
1·0 4·5276 4·3962 4·0450 3·8224 3·6770 3·5450

illustrating the variation of the value of the determinant =R= with the frequency parameter
v is shown in Figure 5. The points at which the determinant =R= has zero values denote
natural frequencies: i.e., 1·7789, 2·4903, 3·6749, 5·9323 and 6·4196. These first five natural
frequencies are the values of vcs in Table 4 corresponding to the case of a beam–water
system, a free surface wave disturbance (s) and fluid compressibility (c).

6.1.      

The speed of sound in an incompressible fluid tends to infinity, so that formulations
suitable for an incompressible fluid are deduced by substituting 1/c:0 into the equations
presented in previous sections. As obtained by this approach, the first three frequency
parameters calculated are listed in Tables 1–3.

A comparison of these results indicates that the effect of water on the beam provides
an influence similar to the inclusion of an additional mass or a fluid action in phase with
an inertia force. The frequency corresponding to each mode of the beam–water system
decreases with increasing ratio n/g. This conclusion re-affirms the mathematically proven
results of Xing and Price [17].

T 3

The third frequency parameter v3

g
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

n 0·0 0·5 1·0 3·0 5·0 8·0 10·0

0·0 7·8540
0·5 7·7509 7·6583 7·3728 7·1753 6·9691 6·8671
0·8 7·7007 7·5704 7·1792 6·8989 6·5849 6·4197
1·0 7·6874 7·5450 7·1148 6·8048 6·4562 6·2712
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T 4

The frequency parameters of the long, thin beam–water system (n=0·8, g=10·0)

Rigid beam Wet flexible beam
Dry beam, ZXXXXCXXXXV ZXXXXXXXXXXCXXXXXXXXXXV

va vc vcs vi vc vis vcs

1·8746 1·6275 1·6275 1·7789 1·7789
1·9635 2·4900 1·9633 1·9633 2·4903 2·4903

4·6810 3·6610 3·6603 3·6755 3·6749
5·8905 5·9319 5·8905 5·8905 5·9323 5·9323

7·8540 6·4197 6·4153 6·4241 6·4196

6.2.      

To compare the natural characteristics of beam–water systems, by way of example, two
systems, n=0·8 and g=10·0, as well as n=0·8 and g=0·5, are examined. These imply
that for the fixed ratio n=0·8, i.e., depth of water to length of beam, the ratio H/F,
representing length to width of beam, changes from 0·5rs /rf to 10rs /rf . That is, for a fixed
value of rs /rf the former value represents a short, thick beam whereas the latter represents
a long, thin beam. In particular, for g=0·5, it follows that H/F=1·2 for a beam of density
rs =2·4×103 kg/m3 (rf =1·0×103 kg/m3) and H/F=3·6 for a steel beam with
rs =7·8×103 kg/m3. In the short, thick beam example, it is noted that the beam bending
theory is not strictly applicable and a theory incorporating shear effects or a more accurate
beam theory is needed. However, from the viewpoint of an engineering approximation,
a simple beam bending theory can give a first order approximation to the solution of the
dynamical problem. For example, results obtained by a two-dimensional analysis for a
dam of height 160 m, base width 120 m and top width 16 m demonstrated that the first
two important vibration forms are those associated with beam bending. The natural
frequency parameters for the long, thin and short, thick beams are given in Tables 4 and
5, respectively. The distribution of displacement and dynamic pressure along the beam
loaded by water corresponding to the first natural frequency are shown in Figures 6 and
7. Here, superscripts i and c denote incompressible and compressible water assumptions;
a represents the case of a dry beam, i.e., the beam in air; s represents the case in which
the influence of a free surface wave disturbance is examined. For example, vc denotes the
frequency parameter of the fluid assuming compressibility and zero disturbance on the free
surface, whereas vis denotes the frequency parameter when the free surface wave effect is
included and fluid incompressibility assumed, etc.

T 5

The frequency parameters of the short, thick beam–water system (n=0·8, g=10·0)

Rigid beam Wet flexible beam
Dry beam, ZXXXXCXXXXV ZXXXXXXXXXXCXXXXXXXXXXV

va vc vcs vi vc vis vcs

1·8746 1·8592 1·8570 1·8590 1·8570
1·9635 2·4900 1·9634 1·9634 2·4901 2·4901

4·6810 4·5591 4·5587 4·5590 4·5590
5·8905 5·9319 5·8905 5·8905 5·9317 5·9317

7·8540 7·7007 7·6974 7·7009 7·6976
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Figure 6. The first vibration forms of the long, thin beam–water interaction system: (a) the vibration form
of the beam; (b) the vibration form of the dynamic water pressure along the beam.

A comparison of these results shows the following.

(i) For an assumed rigid beam, the free surface wave effect causes an increase in the
value of the natural frequencies of the fluid domain. This is due to the influence of the
potential associated with the free surface disturbance.

(ii) The number of natural frequencies of the coupled system equals the sum of the
number of natural frequencies for the dry elastic beam and the number of natural
frequencies for the water domain in the rigid beam case. This suggests that the interaction
does not change the number of natural frequencies of the total coupled system.

(iii) For an assumed flexible beam, the calculated natural frequencies (corresponding to
frequencies of the beam) of the coupled system are lower than the natural frequencies of
the dry beam. However, the calculated natural frequencies (corresponding to frequencies
of the water domain) of the coupled system are not obviously changed. Further
calculations indicate that for a fixed value of n, an increase in n causes a decrease in the
values of the natural frequencies. Therefore, the effect of water in the beam–water system

Figure 7. The first vibration forms of the short, thick beam–water interaction system: (a) the vibration form
of the beam; (b) the vibration form of the dynamic water pressure along the beam.
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is equivalent to an additional mass attached to the beam (or fluid action in phase with
the inertia force).

(iv) The free surface wave disturbance plays a more dominant role in influencing the
dynamical behaviour of the coupled beam water interaction system in the low frequency
region, whereas fluid compressibility is more influential at higher frequencies.

7. CONCLUSIONS

The dynamical behaviour of a flexible beam–water interaction system has been studied,
subject to boundary conditions at infinity (i.e., zero disturbance) in the water domain and
on the free surface (i.e., zero or linear surface wave). The governing equations describing
the system were analyzed using the separation of variables method. The eigenvalue
equation of the natural vibration of the coupled system was derived and exact solutions
obtained.

For these chosen boundary conditions, the natural vibration forms corresponding to the
natural frequencies satisfy an orthogonality relation as demonstrated in Appendix A.
However, when the Sommerfeld radiation condition (Appendix B) is introduced as a
replacement boundary condition at infinity, this allows wave disturbances to propagate to
infinity with no reflection. The corresponding eigenvalues are complex in form and hence
the complex frequency is not a true natural vibration of the coupled fluid–structure
interaction system in the context of this paper.
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APPENDIX A: ORTHOGONALITY RELATION OF NATURAL VIBRATION FORMS

A solution is assumed in the form p(x, y, t)=P(x, y)T(t), u1( y, t)=U1( y)T(t) and
u2( y, t)=U2( y)T(t). The substitution of this solution into equations (1)–(12) gives

P,ii +(V
 2/c2)P=0, P,y (x, 0)=0, (A1, A2)

P(x, h)=0, with the free surface wave neglected, (A3)

or

P,y −(V
 2/g)P=0, y= h, with the free surface wave included (A4)

P(x, y)=0, x:a, (A5)

in addition to equations (14) and (21)–(29) with P(0, y) replacing X(0)Y( y) and X'(0)Y( y)
by P,x (0, y). For convenience, a tensor index i (i=1, 2) is used to represent x and y,
respectively, and (),ii =(),11 + (),22; (),i = 1()/1xi . In the same way, a set of equations
satisfied by the conjugate solution p*=P*T*, u*1 =U*1 T* and u*2 =U*2 T* can be derived,
which is similar to the set satisfied by the solution p=PT, u1 =U1T and u2 =U2T but
with all complex quantities replaced by their corresponding conjugate quantities.

It is assumed that V
 2
n and V
 2*m are two different natural frequencies and Pn , U1n , U2n and

P*m , U*1m , U*2m the corresponding natural vibration forms satisfying equations (A1)–(A5)
and (21)–(29) and their conjugate equations. For these solutions, it follows that

V
 2*m −V
 2
n

c2 gG

PnP*m dG+EJrf g
h

0

(U*1mU(4)
1n V
 2*m −U1nU*(4)

1m V
 2
n ) dy



. .   .508

+EJrf g
H

h

(U*2mU(4)
2n V
 2*m −U2nU*(4)

2m V
 2
n ) dy=gG

(P*m Pn,ii −PnP*m,ii ) dG

+rf g
h

0

[P*m (0, y)U1nV
 2
n −Pn (0, y)U*1mV
 2*m ] dy, (A6)

where G represents the domain of water with its boundary S. By using Green’s theorem,
it follows that

gG

(P*m Pn,ii −PnP*m,ii ) dG=gs

(P*m Pn,i −P*m,iPn )hi dS, (A7)

g
h

0

(U*1mU(4)
1n V
 2*m −U1nU*(4)

1m V
 2
n ) dy=(V
 2*m −V
 2

n ) g
h

0

U01nU*01m dy+[U1mU*11n −U*'1m U01n

+U*11m U1n −U*01m U'1n ] =h0, (A8)

g
H

h

(U*2mU(4)
2n V
 2*m −U2nU*(4)

2m V
 2
n ) dy=(V
 2*m −V
 2

n ) g
H

h

U02nU*02m dy+[U2mU*12n −U*'2m U02n

+U*12m U2n −U*02m U'2n ] =Hh , (A9)

which, in connection with the boundary conditions expressed in equations (A2)–(A5),
(22)–(23) and (25)–(28), gives

gG

(P*m Pn,ii −PnP*m,ii ) dG=−b
V
 2*m −V
 2

n

g g
a

0

Pn (x, h)P*m (x, h) dx− Jmn (0)+ Jmn (a),

(A10)

g
h

0

(U*1mU(4)
1n V
 2*m −U1nU*(4)

1m V
 2
n ) dy+g

H

h

(U*2mU(4)
2n V
 2*m −U2nU*(4)

2m V
 2
n ) dy

=(V
 2*m −V
 2
n )$g

h

0

U01nU*01m dy+g
H

h

U02nU*02m dy%. (A11)

where

Jmn (x)=g
h

0

[P*m (x, y)Pn,x (x, y)−P*m,x (x, y)Pn (x, y) dy, (A12)

Jmn (a)= lim
x:a

Jmn (x), (A13)

b=601 with the free surface wave neglected
with the free surface wave included 7. (A14)
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The substitution of equations (A7)–(A13) into equation (A6) and using equation (29)
gives

(V
 2*m −V
 2
n )61

c2 gG

PnP*m dG+EJrf $g
h

0

U01nU*01m dy+g
H

h

U02nU*02m dy%
+

b

g g
a

0

Pn (x, h)P*m (x, h) dx7= Jmn (a). (A15)

From equation (A5) and its conjugate form in the undisturbed case, it follows that
Jmn (a)=0. For equation (A15 with m= n, it follows that V
 2*m =V
 2

m , implying that V
 2 is
a real number. In a similar manner, through equations (15)–(18), it can be proved that,
for each real V
 2,

[k̂2 − (k̂2)*] g
h

0

YY* dy=0, (A16)

and hence k̂2 is a real number. Finally, according to equation (30), l
 2 is also a real number.
For two different frequencies (m$ n), there exists the following orthogonality relation

of the natural vibration:

1
c2 gG

PnP*m dG+EJrf $g
h

0

U01nU*01m dy+g
H

h

U02nU*02m dy%
+

b

g g
a

0

Pn (x, h)P*m (x, h) dx=0, m$ n. (A17)

APPENDIX B: A DISCUSSION OF THE SOMMERFELD CONDITION

To solve wave radiation problems in an infinite domain, Sommerfeld [1] proposed a
radiation condition at infinity. Physically, this represents a disturbance in the water
propagating in the positive x direction with no wave reflected. Thus for a pressure wave
in the form of a harmonic function of time p=P(x, y) e−iV
 t associated with the parameter
V
 , the corresponding radiation condition is expressible as

p(x, y, t)=P(x, y) e−iV
 t, P,x −il
 P=0, x:a, (B1)

where V
 and l
 are of necessity two non-negative real parameters associated with the wave
and P,x = 1P/1x. Because the wave equation (1) is a real valued equation, the complex
conjugate (represented by a superscript asterisk) form p*(x, y, t) of the complex pressure
p(x, y, t) must also be a solution of equation (1). Thus the radiation condition
corresponding to this conjugate solution p*(x, y, t) satisfies the expressions

p*(x, y, t)=P*(x, y) eiV
 t, P*,x +il
 P*=0, x:a. (B2)

It follows that, for the function p(x, y, t)=P(x, y) e−iV
 t =X(x)Y( y)T(t) satisfying the
radiation condition (B1) at infinity, the function X(x) satisfies the equation

(X'− il
 X)=0, x:a, radiation case. (B3)



. .   .510

and from equations (31), (32), (34), (35) and (B3), the functions of T(t) and X(x) satisfying
equation (B1) (constant coefficients neglected) are of the forms

X(x)T(t)=1, V
 =0= l
 , X(x)T(t)= ei(l
 x−V
 t), V
 q 0, l
 e 0. (B4, B5)

B.1.     X(x), Y( y)  T(t)

In the case in which free surface waves are neglected, the solutions for the function Y( y)
expressed in equations (42) and (43) remain valid. For the case V
 =0= l
 , it follows from
equation (30) that k
 0 0 and, furthermore, that through equation (42) there exists no
non-trivial solution. For the case V
 q 0 and l
 e 0 in combination with equations (30), (43),
(B4) and (B5), the non-trivial solutions for the functions Y( y), X(x) and T(t) satisfying
equation (B1), are

Yn ( y)= cos (k̂ny), Xn (x)T(t)= ei(l
 nx−V
 t), (B6)

k̂n =(2n−1)p/2h, l
 2n =(V
 2/c2)− k̂2
n e 0, V
 q 0, n=1, 2, 3, . . . .

When free surface waves are included, the solutions for the function Y( y) expressed in
equations (45)–(52) and the solutions for the function X(x)T(t) presented in equations (B4)
and (B5) are valid. For the case V
 =0= l
 , it follows from equation (30) that k̂0 0 and
the only possible solutions for T(t), X(x) and Y( y) are the constant pressure solutions

Y( y)= d, X(x)T(t)=1, V
 =0= l
 , k̂=0. (B7)

For the case V
 q 0 and l
 e 0, the non-trivial solutions for the functions of Y( y), X(x)
and T(t), which satisfy equation (B1), take the forms

Yn ( y)= cos (k̂ny), Xn (x)T(t)= ei(l
 nx−V
 t), (B8)

tan (k̂nh)=−V
 2/gk̂n , l
 2n =(V
 2/c2)− k̂2
n e 0, n=0, 1, 2, 3, . . . ,

k̂nh $ ((2n−1)p/2, np) for nq 0, k̂0 = ik0, V
 q 0.

B.2.   , V
 2 =0
In this case the only possible solutions for the functions X(x), Y( y) and T(t) are given

in equations (44), (53) and (B7). The equation on the interaction interface expressed in
equation (29) reduces to X'(0)Y( y)0 0, for which only ln =0 in equation (B7) provides
a non-trivial solution. This represents a static constant fluid pressure solution and it
appears only in the case of free surface waves and the radiation boundary at infinity. For
this constant pressure solution, the corresponding boundary conditions are described by
equations (3) and (B1). For illustrative purposes, let F=1 and d=24EJp̂ in equation (B7).
The substitution of this solution in equation (B7) and V
 2 =0 into equations (21)–(26) gives

U1( y)=−p̂y4 +D1y3 +D2y2, U2( y)=D3(j−1)+D4. (B9, B10)

Further from equations (27) and (28), it follows that

D1 =4p̂h, D2 =−6p̂h2, D3 =−4p̂h3, D4 = p̂h3(h−4H). (B11)

This result describes a zero frequency mode of the beam with constant fluid pressure p̂:
i.e., a static solution.

B.3.  

The possible solutions for the functions T(t), Y( y) and X(x) are given by equations (B6)
for the case in which free surface waves are neglected and by equations (B8) for the case
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in which waves are present on the free surface. For these two situations, the complex
pressure amplitude X(x)Y( y) takes the form

X(x)Y( y)= s
n1 −1

n=0

Gn cos (k̂ny) eil
 nx. (B12)

Here n1 denotes the same positive integer as used in equation (54) (i.e., a minimum positive
integer satisfying the condition k̂2

n qV
 2/c2) and Gn represents a series of unknown complex
constants. Because n=0 does not represent a valid solution of equations (B6), G0 0 0
defines the case in which free surface waves are neglected. By using the approach described
in section 5 and the complex beam functions

f1(j)= eivj, f2(j)= e−ivj, f3(j)= evj, f4(j)= e−vj,

f5(j)= eiv(j−1), f6(j)= e−iv(j−1), f7(j)= ev(j−1), f8(j)= e−v(j−1), (B13)

it can be shown that the equivalent equations obtained are in the forms expressed in

equations (55)–(68) but with the replacement of −l� n by il� n and sa
n= n1

by sn1 −1
n=0 . For

example, here En and E	 n take the new forms

En =1>6In $ 1
k̄4

n −v4 +
il� n
gv4%7, E	 n =−1>6In $ 1

k̄4
n −v4 +

il� n (k̄4
n −v4)
gv4 %7. (B14)

For this case, all the unknown constants in equations (56)–(60), (62)–(64) and (66)–(67),
equation (65) and the characteristic eigenvalue equation (68) are complex.

B.4. 

Equation (A15) is valid for the radiation conditions (B1) and (B2). From this equation
it follows that there exists a real frequency V
 2

m of the eigenvalue equation (68) if and only
if Jmm (a)=0. From equation (B1) and its conjugate equation (B2) it follows from
equation (A12) that

Jmn (a)= i(l
 n + l
 *m ) lim
x:a g

h

0

P*m (x, y)Pn (x, y) dy. (B15)

From equations (A12) and (B15) the possible cases of Jmm (a)=0 are obtained as follows:
(a) l
 m =0—this is the solution corresponding to the constant pressure solution with V
 m =0
expressed in equations (B7), and since P=1 and P,x =0, then the equation (A12)
Jmm (x)=0;
(b) l
 m =ilm (lm q 0)—that is,

l
 m + l
 *m =0, (B16)

giving the solution for the undisturbed condition at infinity and therefore for a finite x
the integral Jmm (x)$ 0 but Jmn (a)=0; and the undisturbed condition at infinity is
obtained here because of the relaxation of the requirement for a real valued l
 m in the
Sommerfeld condition;
(c) l
 m q 0—this requires that

lim
x:a g

h

0

P*m Pm dy=0, lim
x:a

=Pm ==0; (B17)

(d) real function Pm =P*m gives Jmm (x)=0.
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However, the requirements in (c) and (d) are not valid for the solutions in equations
(B6) and (B8). Thus there exists no real solution of V
 2

m $ 0 for the eigenvalue equation
(68) under the Sommerfeld condition (B1). A further discussion of and calculations for
the case of the Sommerfeld condition are not pursued in the present paper.


